Certified Artificial Intelligence Practitioner (CAIP)
(AIP-110.AK1)/ISBN:978-1-64459-224-3
Gain hands-on experience to pass the CertNexus AIP-110 exam with the Certified Artificial Intelligence Practitioner (CAIP) course and lab. The lab is cloud-based, device-enabled, and can easily be integrated with an LMS. Interactive chapters comprehensively cover the AIP-110 exam objectives and provide understanding on the topics such as problem formulation, applied artificial intelligence, and machine learning in business; data collection, comprehension, cleaning, and engineering; analyze a data set to gain insights, algorithm selection, and model training, model handoff, ethics and oversight; and more.
Here's what you will get
The Certified Artificial Intelligence Practitioner certification exam is designed for professionals seeking to demonstrate a vendor-neutral, cross-industry skillset within AI and with a focus on machine learning to design, implement, and handoff an AI solution or environment. The certification exam will prove a candidate's knowledge of AI concepts, technologies, and tools that will enable them to become a capable AI practitioner in a wide variety of AI-related job functions.
Lessons
13+ Lessons | 136+ Quizzes | 218+ Flashcards | 221+ Glossary of terms
TestPrep
50+ Pre Assessment Questions | 2+ Full Length Tests | 50+ Post Assessment Questions | 100+ Practice Test Questions
Hand on lab
27+ LiveLab | 00+ Minutes
Here's what you will learn
Download Course OutlineLessons 1: Introduction
- Course Description
- How to use this Course
- Course-Specific Technical Requirements
Lessons 2: Solving Business Problems Using AI and ML
- Topic A: Identify AI and ML Solutions for Business Problems
- Follow a Machine Learning Workflow
- Topic C: Formulate a Machine Learning Problem
- Topic D: Select Appropriate Tools
- Summary
Lessons 3: Collecting and Refining the Dataset
- Topic A: Collect the Dataset
- Topic B: Analyze the Dataset to Gain Insights
- Topic C: Use Visualizations to Analyze Data
- Topic D: Prepare Data
- Summary
Lessons 4: Setting Up and Training a Model
- Topic A: Set Up a Machine Learning Model
- Topic B: Train the Model
- Summary
Lessons 5: Finalizing a Model
- Topic A: Translate Results into Business Actions
- Topic B: Incorporate a Model into a Long-Term Business Solution
- Summary
Lessons 6: Building Linear Regression Models
- Topic A: Build Regression Models Using Linear Algebra
- Topic B: Build Regularized Regression Models Using Linear Algebra
- Topic C: Build Iterative Linear Regression Models
- Summary
Lessons 7: Building Classification Models
- Topic A: Train Binary Classification Models
- Topic B: Train Multi-Class Classification Models
- Topic C: Evaluate Classification Models
- Topic D: Tune Classification Models
- Summary
Lessons 8: Building Clustering Models
- Topic A: Build k-Means Clustering Models
- Topic B: Build Hierarchical Clustering Models
- Summary
Lessons 9: Building Decision Trees and Random Forests
- Topic A: Build Decision Tree Models
- Topic B: Build Random Forest Models
- Summary
Lessons 10: Building Support-Vector Machines
- Topic A: Build SVM Models for Classification
- Topic B: Build SVM Models for Regression
- Summary
Lessons 11: Building Artificial Neural Networks
- Topic A: Build Multi-Layer Perceptrons (MLP)
- Topic B: Build Convolutional Neural Networks (CNN)
- Topic C: Build Recurrent Neural Networks
- Summary
Lessons 12: Promoting Data Privacy and Ethical Practices
- Topic A: Protect Data Privacy
- Topic B: Promote Ethical Practices
- Topic C: Establish Data Privacy and Ethics Policies
- Summary
Appendix A
- Mapping Certified Artificial Intelligence (AI) P...oner (Exam AIP-110) Objectives to Course Content
Hands-on LAB Activities
Collecting and Refining the Dataset
- Examining the Structure of a Machine Learning Dataset
- Loading the Dataset
- Exploring the General Structure of the Dataset
- Analyzing a Dataset Using Statistical Measures
- Analyzing a Dataset Using Visualizations
- Splitting the Training and Testing Datasets and Labels
Setting Up and Training a Model
- Setting Up a Machine Learning Model
- Dealing with Outliers
- Scaling and Normalizing Features
- Refitting and Testing the Model
Building Linear Regression Models
- Building a Regression Model using Linear Algebra
- Building a Linear Regression Model to Predict Diabetes Progression
- Building a Regularized Linear Regression Model
- Building an Iterative Linear Regression Model
Building Classification Models
- Creating a Logistic Regression Model to Predict Breast Cancer Recurrence
- Training Binary Classification Models
- Training a Multi-Class Classification Model
- Evaluating a Classification Model
- Tuning a Classification Model
Building Clustering Models
- Building a k-Means Clustering Model
- Building a Clustering Model for Customer Segmentation
- Building a Hierarchical Clustering Model
Building Decision Trees and Random Forests
- Building a Decision Tree Model
- Building a Random Forest Model
Building Support-Vector Machines
- Building an SVM Model for Classification
- Building an SVM Model for Regression
Building Artificial Neural Networks
- Building an MLP
Exam FAQs
There are no formal prerequisites for the certification exam.
No application fee
Multiple Choice/Multiple Response
The exam contains 80 questions.
120 minutes
60%
Any candidates who do not pass a CertNexus certification exam on the first attempt are eligible for one free retake after 30 calendar days from the time they took the initial exam. All CertNexus certification exam vouchers include one free retake. Candidates must purchase another voucher for any subsequent attempts beyond the first free retake.
To be declared